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1. Introduction 

The efficient generation of formulas for the calculation of CI matrix elements 
for functions with an arbitrary number of open shells has received much attention 
over a number of years [1, 2]. For calculations with singlet configurations with a 
small number of open shells (e.g. a closed-shell Hartree-Fock configuration with 
all single and double excitations) this presents little difficulty, since only a small 
number of different formulas is needed. However, even if an orthogonal basis is 
used, this number increases rapidly for larger numbers of open shells and for 
higher multiplicities and the direct implementation of this method soon becomes 
unwieldy [3J. We will assume a spin-independent Hamiltonian and real functions 
throughout this paper. A useful approach then consists of expressing the weights 
of the one- and two-electron integrals in the general expression for a CI matrix 
element 

ij ijkl 
(1) 
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in terms of a number of standard coefficients. This list of standard coefficients 
should satisfy the following conditions: 

1. the size of the list permits its storage in central memory; 
2. information may be retrieved from it efficiently; 
3. the relations between the weight factors in Eq. (1) and the elements of the 

standard list are relatively simple. 

This standard list may then be calculated once and for all for use in any CI calcula- 
tion, where the only restriction is that the number of open shells in the configuration 
set should be compatible with the standard list. In order to satisfy the above- 
mentioned conditions, various methods have been proposed, of which the so- 
called unitary group approach [4-7] seems to be promising but still not fully 
exploited. In this approach the properties of the unitary group U, (n is the dimension 
of the spatial orbital basis) are used to obtain an orthogonal N-electron basis for 
the CI calculation at hand by constructing the relevant Gelfand-Tsetlin tableaux 
or by some other equivalent device (e.g. Wigner tableaux or Paldus graphs [4-5]). 
The second quantization representation of the Hamiltonian [5-7] 

H = ~h,jC,~j + �89 Z < i k l j l )  (C,~jCk~, --  3,, Ck-*J) (2) 
ij  ijkl 

is used, where the C i _~ j operators are the group generators of U,. Consequently 
the contributions of the one- and two-electron integrals to matrix elements such as 
given by Eq. (1) may be evaluated via a calculation of all possible matrix elements 
of the group generators and of the products of two group generators. However, 
since this method is only efficient for complete CI calculations [5], we will follow a 
slightly different method, suggested by Wetmore and Segal [7]. In their approach 
all possible matrix elements of the group generators are calculated by applying 
Ci _~ j to the complete set of canonical basis function lw, co), where w is the occupa- 
tion vector and co is a spin function label. The vector w has elements w~ = 0, 1 or 2 
and co defines a specific spin coupling scheme for the open shell orbitals. It will 
be assumed throughout that these orbitals are ordered in the same way for all 
basis functions. Following Wetmore and Segal we then have (Eq. (10) of [7]) : 

c,_~jlw, co) = y~ ,~(w', co', w, co)lw', ~ ' )  (i # j) (3) 

where the summation may include all possible spin functions allowed for the 
occupation vector w' with elements 

w,  = w i - 1, wj  = wj  4- 1, ws = wk(k  ,/= i , j )  

Because of the orthonormality of the basis the weight factors of the one-electron 
integrals in Eq. (l) are identical to the q-coefficients and the weight factors for the 
two-electron integrals are evaluated by using (Eq. (11) of [7]): 

(w", co"lci ~ ~ck ~ ,{w, co) = F~ q(w", co", w ', co ')~(w', co ', w, co) (4) 
03' 

In the method of Wetmore and Sega] all possible q-coefficients are evaluated and 
stored once and for all for use in arbitrary CI calculations. However, the total 
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number of  q-coefficients to be stored increases rapidly with the number of open 
shells [7]. 

In the following we will describe an algorithm for the evaluation of  the r/-co- 
efficients, which uses a much smaller amount of  storage while being comparable 
in speed. Special attention will be paid to the possibility of  storing non-zero 
elements only, which leads to a substantial reduction of the number of coefficients 
actually needed. This will be done by expressing the t/-coefficients in terms of  the 
representation matrix elements for certain permutations of  the spatial orbitals 
in the ordered basis Iw, (~)), viz. those permutations which contain only one cycle 
with length greater than one. In our method the features of  two existing methods 
for the calculation of  CI matrix elements are used, viz. the method of Wetmore and 
Segal, i.e. calculation of the 4-index quantity Ci}~ as a scalar product of the 2-index 
vectors t/i ~. and the approach of Ruedenberg et al. [2], i.e. calculations of  C/~.~l via 
the representation matrices of  arbitrary permutations of the spatial orbitals. 

2. Basic Formulas 

2.1. Definitions 

In the following the spin functions are assumed to be constructed according to 
the branching diagram method [8-11]. If a fixed ordering of the open shell 
orbitals is assumed, the N-electron functions thus obtained are (up to a phase 
factor) identical to the functions corresponding to Gelfand-Tsetlin tableaux [12]. 
The spin function label co may be used to designate the branching diagram path 
or Yamanouchi symbol, corresponding to a particular spin function. 

Using the notation of [11] in a slightly modified form the state functions Iw, co) 
may be defined by 

Iw, = I-I Dk H C?IO  (5) 
k s~  kso" 

where ~r and ~5 are the sets of  singly (w k = 1) and doubly (w k = 2) occupied 
orbitals respectively and 10) is the vacuum state, i.e. the state for which 
w k = 0 (1 ~< k ~ n). Ck + = Ck(1 ) and C 7 = Ck(-- 1, S) cf. Eqs. (1) of  1-11], i.e. 
Ck + and C k- correspond to a step up or down in co respectively. 

The dimension of the set a, i.e. the number of open shells, will be denoted by m. 
Any function of the form (5) is normalized. In Eq. (5) the C~ operators are ordered 
according to the fixed ordering condition. For simplicity we will assume that this 
condition is chosen such that the C~ operators are applied in ascending order ofk. 

The explicit forms of the operators C~, D~ and C i ~ j in terms of the basic fermion 
operators c], c k, g~] and Ck (the creation and annihilation operators for spatial 
orbital k with e and fl spin respectively) are (Eqs. (1) and (5) of  [11]). 

c ;  = c2 

C k- = [2S(2S + 1 ) ] - 1 / 2 ( - c 2 S  + 2Se]) (6) 
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where S is the step-down operator with respect to S z. 

D k ~c*  (7) ~k k 

ci ; = c;c  + (8) 

Using Eqs. (6-8) the following commutators, which will be needed in the following, 
are easily derived 

[C +, D1] = 0 (9) 

[Ci~ j ,  Dk] = 8ik (8[c; + ~.]ci ~) (10) 

c?] = c [  (11) 

[Ci-~j, G-* l]  = 3u G - ~ j  - 3k~ Ci-~l (12) 

The branching diagram operators C~ and the double occupation operators D k 
act on the space and spin coordinates simultaneously. Since the C~_. j commute 
with all spin operators [7], one might suppose that these operators act on the 
space coordinates only. However, because of the anti-commutation properties 
of the fermion operators in Eq. (8), C~ ~j also projects to the antisymmetrized 
N-electron space. Therefore the spin part of the function [w, c0> on which C~_~ j 
acts may also be affected if Ci~j changes the number of open shells 
(e.g. w i = wj = 1). 

Further we introduce the permutations P which permute the indices of the singly 
occupied spatial orbitals in Iw, co). Defining P, and Pspin as the permutations of 
the fermion operators and the one-electron spin functions (e and fi) respectively, 
the antisymmetrization yields 

Pt(w, co) = ( -  1)P'lw, co) = P~pi, P[w, co) 

Therefore 
Pt -- 1 lW, (9, P )  ~ P lw ,  co) = ( -  l )  PspinlW, co) (13) 

for a function where the spatial orbital indices of the C~ operators are permuted 
with respect to the fixed ordering in [w, co). From Eq. (13) it follows that the 
(w, S) subspace spanned by all functions Iw, co) with fixed w and S and all co 
compatible with the chosen values of m and S is closed under these permutations. 
Therefore these functions form a basis for a representation of P. 

The calculation of the q-vectors of Eq. (3) may be carried out in two steps. First 
we consider the effect of a generator C i -.i on a basis function Iw, co) without 
taking account of the fixed ordering condition. In this step w and co may both be 
affected. The other step consists of reordering the open shells. Since w is fixed in 
this step, this is a transformation within the (w, S) subspace of the antisymmetrized 
N-electron space. 

2.2. Application o f  a Generator C i _~j to a Function Iw, co) 

We start by observing that the generator C i _~ j commutes with all operators witb 
indices k r i, j and that all operators D~ commute with all branching diagram 
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operators C~. In order to describe the effect of C~_~ j on [w, co) we define the 
intermediate function 

,ks 
IWs, ss> = [I  c?10> (14) 

kEa 

where a is the set of singly occupied orbitals in Eq. (5) and k s is defined as follows 
(ignoring the cases w~ = 0 and w i = 2, since in these cases [w, co) is annihilated by 
C~_~j). Ifwi = 1 or wj = 1 in the function of Eq. (5), k, is the index of  the orbital 
preceding i or j respectively in the fixed ordering sequence. If  w~ = w~ = 1, k S 
precedes the lowest o f i  andj.  In the only remaining case, i.e. wl = 2, wj = 0, k s is 
chosen as the index of the orbital preceding i. From these definitions it follows that 
the orbitals i a n d j  are empty in the intermediate function, implying 

c,.jjw,, ss> = o (14a) 

The function lws, S~) is an eigenfunction of S 2 with spin quantum number S~ 
determined by the form of the branching diagram path corresponding to Eq. (14). 
In order to obtain explicit results, four cases, depending on the occupations of  
orbitals i a n d j  in Iw, co), have to be treated separately. 

1) w i = 1, wj = 0 
Eqs. (1 l) and (14) may be used to obtain 

C i -~ • + jc, 1ws, Ss> = C;]w,, &> (15) 

2) w~= 1, w j =  l 
We impose the condition that C~ -+ and C f  are neighbours in the function on which 
Ci~ j acts. This implies that the following relations can only be used after a 
permutation of  the orbital indices in Iw, co). Eqs. (11) and (14) lead to 

c,~ ,c,+-cTlws, Ss> = ci~ jc~ c,~l~, Ss> = c? cj~l~s, ss> (16) 

and Eqs. (6) and (7) may then be used to obtain 

c f -  c f f  lw,, & )  = Fa(S,)Djl %, Ss) 

C ~ C ~ I w  s, S~) = FB(S,)D~Iws, 85. ) (17) 

c7  c7  >s, ss> : c7  c,-J~s, s~> = o 

with 

FA(Ss)  = - [ S / ( S  + ~)]*/2 

FB(Ss)  = fi(S ~- 1 ) / (8  -}- 1)31/2 (18) 

3) w ~ :  2, wj = 0 
By using Eqs. (10) and (6) we find 

c,+ jD,lw,, ss> = [FA(S~)Cj+ Ci - + FB(Ss)C] C,+]Iw~, Ss> 
(19) 

= [FA(S,)C,+C/ + ~(Ss)C,-CT]lws, Ss> 

where FA, B(S ) are given by Eqs. (18). 
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4) w i --- 2, ~T = 1 
This case differs only in sign from case 1) : 

C i __, jDiC f Iw,, S s> = - D iCi ++- Iws, S,> 

This relation may be obtained by using Eqs. (10), (11), (6) and (7). 

(20) 

2.3. The Transformation to a Basis with Fixed Spatial Orbital Ordering 

The other part of the calculation, viz. adjusting the ordering of the spatial orbital 
indices, may be expressed by 

I w, (9, P}  = P1 w, co} = Z ~m,s(co', 09 I P)[w, co'} (21) 
oY 

where P is a permutation of the spatial orbital indices and the summation is over 
all spin functions cot compatible with m and S. re,,, s(co ', co I P) is the element with 
column index co and row index co' of the matrix rCm, s(P) representing P in the 
basis Iw, co) with fixed w and S. The labels m and S indicate that the representation 
depends on m and S. Since P only affects the ordering of the singly occupied 
orbitals in Iw, r the representation of P in this basis depends on w, but only 
through m (cf. Sect. 2.1). Therefore a set of dummy spatial orbitals, numbered 
from 1 to m may be used in this part of the calculation without loss of generality. 
Assuming m and S fixed, the basis for our representation of P may then be rendered 
in the form 

Ico> <1o> (22) 
k = l  

For the derivation of an explicit form for ~m, s(P) it is important to realize that the 
permutations needed in our method have a special structure due to the fact that 
only one orbital is out of place in Iw, co, P}, i.e. in the right hand side functions in 
Eqs. (15), (19) and (20) and the left hand side function in Eq. (16). Our problem 
thus reduces to moving one orbital index along the others until the desired ordering 
is obtained. The permutations needed therefore contain only one cycle with length 
greater than one. 

This permutation, which moves orbital index k t to the position of orbital index 
k 2, may then be denoted by 

P = (kt . . -k2)  (k  I < k 2) 

Because of the condition k~ < k 2 we have restricted ourselves to permutations 
which correspond to moving an orbital index to the left in Eq. (22). Since P is 
unitary and the basis is orthogonal and real, the representation matrices will also 
be orthogonal. Consequently the representation matrix of a permutation cor- 
responding to moving an orbital index to the right in Eq. (22), viz. 

(k2.  . . k l )  = ( k l .  . . k 2 ) - I  = p - 1  (k  1 < k2 ) 

is simply the transpose of the matrix for P. Therefore no information is lost by 
the restriction k~ < k 2. 
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In order to arrive at an explicit expression for the matrix elements of P we use the 
decomposition in terms of the basic pair permutations Pk = (k, k + 1) as follows 

k2-- 1 

P ~" (k~ l . , .  k2) : Pklekl + 1 ' ' '  Pk2-1 : H Pk (ks < k2) (23) 
k=kl 

where the last factor in the continued product is applied first to the function on 
which P acts. 

The matrix elements for the basic pair permutations may be derived in various 
ways (see e.g. [9], where the results are given for the corresponding permutations 
in spin space, viz. Psvin in Eq. (13)). Using Eqs. (6) we find 

(CZ+ 1C~- : fl(Sk)C[-+ 1C; + f2(Sk)C;+ 1 C 2  

jCk + IC; = f2(Sk)C;+ IC; - f1(Sk)C~+ I C~ 
P 
k } C++~ C+ = f3 Ck++~ C#- (24a) 

~c#+ ,cf = L c y +  , c #  

with 

L(Sk)  = (2Sk + 1) - 1  

fz(Sk) = -2[Sk(S k + 1)]ln(2Sk + 1) -1 (24b) 

f3 -- - 1  

and S k is the spin quantum number of the (intermediate) function on which the 
C + t ~+ operator k-+ 1%- acts, i.e. the function with k - 1 open shells and a branching 

diagram path identical to co in the range 1 ~< k' < k. The non-zero elements of 
the representation matrices of the basic pair permutations z(co', co IPk) are given 
by the coefficients f ( S ~  of the C k + 1 Ck operators in Eq. (24). 

Using Eqs. (24) an explicit expression for the matrix elements of a general permuta- 
tion as given by Eq. (23) may be derived. To this end we use a method analogous to 
the method used by Grein et al. [10] for the evaluation of branching diagram 
functions in terms of simple spin products. From Eq. (21) we have 

where #2 is the projection operator [14] corresponding to lco)" 

Since, assuming a fixed ordering of the orbitals throughout, the function {~o> is 
completely determined by the corresponding Yamanouchi symbol co, we may 
decompose Q as follows 

= : H (25) 
k=1 

where O k projects onto the components with the same sign in C ]  as in }co), Eq. (22). 
The basic pair permutations Pk commute with all projectors Dk, for which k' # k 
and k + 1, because these permutations do not affect the signs in the C~, operators. 
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Therefore, using Eqs. (23) and (25), the operator OP may be rewritten as follows 
kl k z -  1 m 

OP = [-[ 0 k IF] (Ok+~Pk) ~ 0 k (26) 
k = l  k = k l  k = k 2 + l  

Since O k projects to one of the functions in the right hand side of Eq. (24) we have 

Ok+ ,Pkl{O/,) = f~(Sk)[CO/, + ~) (27) 

where ]co~) is the (intermediate) function obtained by applying all preceding 
Ok+ 1Pk operators and [cos 1) is obtained from I~o~) by applying Eq. (24) followed 
by a projection with Ok+ 1" Assuming that no projection with Ok+ 1 annihilates the 
function on which it acts, successive applications of Eq. (27) yield 

k 2 - 1  

opl~o, > = IF] f~(G)l{o) 
k = k l  

i.e. any non-vanishing u-coefficient may be written in the form 

k 2 - 1 

n(co, co' I P) = [I  fi(Sk) (28) 
k = k l  

In Eq. (28) it is implicitly assumed that the functions ]{Ok) exist in each step. If 
any projection with Y2k(k 1 ~< k ~< k2) annihilates both functions generated by 
Eqs. (24) the n-coefficient vanishes. The same applies if any projection with 
Ok(1 ~< k < k 1 or k 2 < k ~< m) annihilates the function Ion'), i.e. if the 

/ 
+ 

+ - + + + - 

1 2 

Fig. 1. Ordering of the branching diagram paths 
and associated Yamanouchi symbols for S=�89 
m=l,3or5 

+ - + - + + - + + - 

+ 4- -- - + q- 4- -- + -- - - -  

3 4" 5 

1 2 
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Yamanouchi  symbols co and co' are not identical in the ranges 1 ~ k < k 1 and 
k2 <k<~m. 

Eqs. (24) and (28) may  be illustrated by some simple examples. For  m = 3, S = �89 
we have, using Eqs. (24) (see Fig. 1). 

re3,1/2(1, 1 I (12)) = f l (0)  = 1 

g3, 1/2( 1, 21 (12 ) )  = 7Z3, 1/2( 2, 1 [ (12)) = 0 

g3,1/2( 2 , 21(12) )  = f 3  = - -1  

1  3,1/2(1, II (23)) = - L ( � 8 9  - 2 

rr3, 1/2(I, 2 I (23)) = ~3, 1/2( 2, 1 I (23)) = A ( 1 )  = -31/2/2 

~c3, 1/2(2, 21(23)) --f~(}) = �89 

and from Eq. (28) we have 

f ;  (g)fl (0) = - 31/2/2 ~3, 1/2( 1, 2 I (123)) = 1 

A 7t3,1/2(2, 2 I (123)) : (1 = _�89 

Finally we take m = 5, S : i and we evaluate the matrix element 

~5, t/2(2, 1[ (12345)) = <11111, 2J(12345)111111, 1) 

using the sequence of  Fig. 2. 

We start with the branching diagram path corresponding to co' = 1 (Fig. 1). The 
permutat ion is written as 

P = (12345) = (12)(23)(34)(45) 

and in each step we select that  branching diagram path  which resembles the final 
path co = 2 as closely as possible. The S k values needed are the S-values for the 
intermediate functions as indicated by the open circles in Fig. 2. The corresponding 
f(Sk) factors are 

(45) "f2(�89 = - 3 i/2/2 

(34):f3 = - 1  
1 

(23)" --fl( �89 -- 2 

(12) : fd0)  = 1 

Fig. 2. Intermediate branching diagram paths 
needed for the calculation of the matrix element 
(11 l 11,21(12345)11111l, 1) using (12345)= (12)(23) 
(34)(45). The basic pair permutations (k, k + 1) used 
in each step are indicated between the paths and the 
Sk-values needed correspond to the positions 
indicated by open circles 

145) (34) 

1 2 2 

(23} ~ 
2 

(12) 

2 
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and the result is thus 

7c5, 1/2(2, 1 1(12345)) = - 31 /2 /4  

P. J. A. Rutt ink 

3.  R e s u l t s  

3.1. Formulas 

The results of the preceding section may be combined as follows. 

For case 1) (w i = 1, wj = 0) we have from Eqs. (15) and (21) 

Ci~ jlW, CO ) • IW', co, P )  = Plw' ,  co) = ~'~ 7"Cm, S(CO', CO I P)Iw', CO' ) (29) 

The function Iw', co, P)  generally does not satisfy the fixed ordering condition 
because Cj -+ occupies the position of Ci -+ in the original function. It follows that 
P is the permutation which moves orbital index j from its position in Iw', co) 
(which satisfies the fixed ordering condition) to the position of orbital index i 
in the original function Iw, co). 

For case 2) (w i = wj = 1) the derivation is more complicated because Eq. (16) 
may only be used after a permutation has been applied, such that Ci -+ and C f  are 
neighbours in Iw, co, P) ,  i.e. P is the permutation which moves the highest of i 
and j  to the position next to the lowest of  i and j. We then have 

c~_~ jlw, co, P)  -- FA, n(ss)lw', co'(co)> (30) 

where the choice between F A and F n is determined by the sign in the branching 
diagram operator for the lowest of i and j. 

Since C~ _+ j decreases the number of open shells by two, co and co' are different; 
co' is obtained from co by deleting the two steps correslz:'nding to Ci -+ and C~ in 
]w, co, P )  from the corresponding branching diagram path. This involves one 
step up and one step down, since otherwise the contribution vanishes, cf. Eq. (17) ; 
if the signs in Ci +- and C f  are equal, the mapping co' (co) does not exist. Since 
the ordering of the other orbital indices k r i, j is not affected by P, the functions 
Iw, co') automatically satisfy the fixed ordering condition. Using Eq. (21) we then 
have 

c, co, P> = c, y .  co I P)lw, co" '>  - -  co'(co)> 
r 

Multiplying both sides by rcm, s(co", co[P), summing over co and using the ortho- 
gonality of the rt-matrices then yields 

C,~ jlw, co") = FA,,(Ss) Z ~m,s(co", co { P)[w', co~(co)) (31) 
r 

where it should be noted that only those terms contribute for which the mapping 
co'(co) exists. Ss is the spin quantum number of the intermediate function Iw~, S~) 
as defined by Eq. (14). 
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For case 3) (w i = 2, wj = 0) the result follows from Eqs. (19) and (21) 

jlw, co) = 2 F, dSs)l w', co (co), P> 
K = A , B  

= Z F~(Ss) ~ rcm+2,s(co~;, co~:(co) lP)lw', c~ (32) 
K= A, B w~, 

where the first summation includes the two terms in the right hand side of  Eq. (19). 
Since the signs in the C, -+ operators in tw', co~) and Iw', co~) are different, cf. 
Eq. (19), all branching diagram paths for K = A are different from all branching 
diagram paths for K =  B, i.e. the sets {co~} and (co~} are disjoint. Therefore the 
two summations in Eq. (32) (K = A and K = B) may be treated separately. 

C~ _, j increases the number of open shells by two. Therefore co" is obtained from co 
by inserting two steps (one step up and one step down or vice versa) in the position 
corresponding to orbital index i in the fixed ordering sequence. Therefore this 
index satisfies the fixed ordering condition in Iw', co k, P )  in Eq. (32). Since Ci +- 
and Cf  are neighbours in this function, orbital indexj  generally does not satisfy 
this condition. It follows that P is the permutation which moves orbital index j 
from its position in the fixed ordering sequence to a position next to orbital 
index i. Finally, S~ is the spin quantum number corresponding to the intermediate 
function lWs, S~), which in this case contains all branching diagram operators 
C [  contained in Iw, co) with k < i. 

For case 4) (w~=2, wj= 1) the result is obtained analogous to case 1). Using 
Eqs. (20) and (21) we have 

C,~,lw , co)= -Iw',  co, P)= - 2  ~Zm, s(co', co I P)t w', co') (33) 
fo' 

In Iw', co, P) orbital index i is singly occupied. This orbital generally does not 
satisfy the fixed ordering condition, because it occupies the position of orbital 
indexj  in Iw, co). It follows that P is the permutation which moves orbital index i 
to the position of orbital indexj  in the fixed ordering sequence for [w, co). 

3.2. Some Examples 

3.2.1. Case 1) 

We take m = 3, S=�89 w = (01112), co = 2 (i.e. the Yamanouchi symbol is + + - ,  see 
Fig. 1) i = 4  and j =  I. We then have 

C4 ~ 1101112,2) = C,~ ~ 1D5C4 C; C; t0) 

Eq. (15) yields 

C 4 _.1 [01112,2) = D 5 C~- C3 + C2 + 10) = (123)D s C• C f  C~ [0) = (l 23)tl 1102,2) 

where (123) is the permutation moving orbital index l to the position of orbital 
index 4 in the original function. Eq. (21) then yields 

2 

c4~1101112 ,2)=  E ~3.m(co',2l(123))111102, co') 
~o'=1 
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with m = 3, S--- �89 co = 2 and co' = 1, 2. Using the results of the preceding section we 
finally obtain 

C#~ 1101112, 2>=-(31/2/2)[11102, 1)-�89 , 2) 

3.2.2. Case 2) 

We take m=3,  S=�89 w=( l l120) ,  0)=2, i=1 and j = 3 ,  i.e. 

tw, co} = D4C; C; CF 10). 

In this case the orbital indices 2 and 3 have to be interchanged in order to put 
C3 -+ next to C +, i.e. P =  (23). Further we have to take F B because in Iw, co} the 
branching diagram operator for orb'ital 1 corresponds to a step up in co. The 
intermediate function [ws, Ss) is identical to the vacuum state, i.e. S~= 0. Eqs. (31) 
thus yields 

C 1 + 3111120, 2 ) =  FB(0 ) E rt3, */2( 2, co I (23))101220, m'(co)) 
O 

where co' is obtained from co by deleting the first two steps from the branching 
diagram paths co = 1, 2. From Fig. 1 it is clear that in our case the mapping co'(co) 
only exists for ~o = 1 and that m'(1) = 1. Therefore we find 

C, _+3111120, 2)=Fn(0)/t3, 1/2(2, 1 I (23))101220, 1) 

and using Eq. (18) and the results of the preceding section we find 

C 1 ~ 3111120, 2) = --(61/2/2)[01220, 1) 

3.2.3 Case 3) 

We take r e = l ,  S=�89 w= (0!220), co=l ,  i=3  and j =  1, i.e. 

Iw, 09)=101220, 1)=D,DaC;IO) 

Eq. (19) then yields functions where the orbital indices 1 and 2 are interchanged 
with respect to the fixed ordering sequence, i.e. P =  (12). The intermediate function 
is lws, Ss) = C~-10), i.e. S s = �89 co~ and co~ are obtained from co by adding two steps 
in the positions 2 and 3, i.e. co~ = (+  - + )  and co~= (+  + - ) .  Eq. (32) thus yields 

Ca_+ ,]01220, 1) =FA(�89 E re3, ,/2(co J ,  1 [ (12))111120, co~) 

+ F~(�89 ~ g3, 1/2((DB, 21(12))[11120, CO~) 
a~i3 

and using Eq. (18) and the results of the preceding section we obtain 

C3 -~1 [01220, 1) = -- (2-1/2)111120, 1 ) - (6'/2/2)111120, 2) 
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3.2.4. Case 4) 

We take m=3,  S ---~ w=(21110), oo=2, i=  1 and j = 4 ,  i.e. - - 2 '  

]w, co) = 121110, 2) =D1C 4 C f  C;  }0) 

Eq. (20) yields a function in which orbital index 1 occupies position 3 instead of 
position 1. Therefore we have to take P =  (123). Eq. (33) thus yields 

Ct -~ 4[21110, 2) = - E  ~3, t/2(co', 2 1 (123))[l 1120, c0'> 
o,, 

and using the results of the preceding section we find 

C 1 _~ 4121110, 2) = - (31/2/2)[11120, 1 ) - �89 2) 

4. The List of Standard Coefficients 

By comparing Eq. (3) with Eqs. (29), (31), (32) and (33) it is seen that the list of 
r/-coefficients is equivalent to a list of all possible products of F- and x-coefficients. 
Therefore we may expect that the standard list of F- and rr-coefficients will be 
considerably shorter than the list of q-coefficients. The calculation of the scalar 
product of two q-vectors in Eq. (4) corresponds to taking scalar products of two 
re-vectors, i.e. columns or rows of the relevant 1Cm, s(P)-matrices, and multiplying 
the results by the products of the relevant F(Ss) factors. Therefore the algorithm 
for the construction of symbolic matrix element lists which uses this factorization 
is only slightly more time-consuming. 

Regarding the first part of our calculation we note that the number of different 
F(Ss) factors needed for a CI calculation with chosen maximal values of m and S 
is very small. This number follows directly from the form of the highest weight 
branching diagram path in the canonically ordered basis, i.e. the function 

km 

Ico>: fl c; fI c:[o> 
k = k m  + 1 k=  1 

with km= m/2 + S. 

For the number of different F(Ss) factors (which is twice the number of different 
intermediate S~-values which may be encountered) we thus have 

n(F(Ss) ) = 2k,, = m + 2S 

Therefore the storage of the F-factors does not lead to any problem at all. The 
x-coefficients are more difficult to handle than the F-factors, but the generation 
of all ~-coefficients needed for fixed values of m and S is straightforward. 

Moreover, the matrices turn out to be sparse, so that the numbers of non-zero 
elements are relatively small. Since the x-matrices are orthogonal, only the 
matrices for P =  (k 1 . . .  k2) with kl  <k  z need to be stored. However, since only the 
non-zero elements are included in the list, the rows and columns have to be stored 
separately. 
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The length of the list of standard coefficients is determined by the maximal value 
of m for the configuration set used in the CI calculation at hand, i.e. for a C! 
calculation with up to m open shells only the ~-matrices for m open shells are 
needed. This is not obvious because the re-matrices for m + 2  open shells may be 
needed if Eq. (32) is used indiscriminately for the evaluation of Eq. (4). In this 
case the matrix element of Eq. (4) may either be reduced to a simpler form or it 
may be evaluated via an intermediate function Iw', co') containing m - 2  open 
shells. In the first case we have e.g. (cf. Eqs, (1) and (2)) 

C1212ab --�89 o9"1C1~2120111,2 co) 

By using Eq. (8) and the anticommutation relations for the basic fermion operators 
we find 

c?_ 2=c aJalcl 

leading to 

,b =(02111, co" C1212 102111, co) = ~5~,,~ 

Another example is 

12 = ( 2 1 0 1 1 ,  co"[c  212o111, co> 

By using the commutator of Eq. (12) we now find 

C3a, zab = - (21011,  co"lCa ~ 2120111, co)= -c5~,,~ 

These examples show how the use of the intermediate function C 1 ~ 2120111, co) = 
I11111, co') with m + 2 = 5 open shells may be avoided by evaluating C~I directly. 

The second case may be illustrated by 

(11021, co"lC3 ~4C~ ~ 2[20111, co> = (11021, co"lC1 ~ 2C3 ~4120111, co> 

where we have used [C3-, 4, C1-~ 2] = 0. In the left hand side the intermediate 
function C1 ~ 2[20111, co) = [11111, co') contains m + 2 = 5 open shells, whereas 
in the right hand side the intermediate function C a _, ~I20111, co)= [20021, co') 
contains m -  2 = 1 open shell. 

By considering the explicit expressions [15] for the H-matrix elements over 
configurations with 0, 1 or 2 orbital differences it may readily be shown that all 
difficult matrix elements may be handled in this way. Since the rt-matrices for m 
open shells contain all information needed for the calculation of matrix elements 
over configurations with m' < m open shells, we conclude that only the 7z-matrices 
for m open shells are needed in a CI calculation with a configuration set involving 
variable numbers of open shells, i.e. 0 <~ m' ~< m. 

We have used the method described in Sect. 2.3 to calculate the non-zero elements 
of the representation matrices ~ ,  s(P) for various values of m and S. The numbers 
of coefficients needed are given in Table 1, with the corresponding numbers of 
q-coefficients given in parentheses for comparison. Clearly our method uses a 
much smaller amount  of storage than the method which uses the it-coefficients 
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Table 1. Numbers of non-zero =-coefficients 'the numbers of q-coefficients are in 
parentheses) 
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S 

m 0,�89 1, 3 2,25 3, 7 

2 1 (4) 1 (3) 
3 10 (31) 3 (6) 
4 20 (56) 34 (111) 6 
5 117 (506) 81 (286) 10 
6 185 (73i) 381 (2217) 160 
7 1008 (7464) 949 (6950) 281 
8 1464 (9747) 3364 (37497) 2016 
9 7928 (108012) 8852 (134822) 3847 

10 11070 (133227) 27359 (596397) 20109 
11 60634 75642 41239 
12 82971 216173 181896 

15 
21 

455 
694 

6790 
11290 
78352 

directly. Moreover, storing only the non-zero elements has the advantage that 
only the non-zero contributions to the scalar product of Eq. (4) have to be cal- 
culated when using the standard list in the construction of a symbolic matrix 
element list. 

A further analysis yields the numbers of unique (numerically different) 7r-coeffi- 
cients, as given in Table 2. These numbers appear to be small even for large m. 
However, since the mapping from given values of co, co' and P to the index of the 
unique 7c-coefficient needed is generally rather complicated, additional information 
must be stored to use this list efficiently. 

The following method may then be useful for large values of re. Since both columns 
and rows may be needed in an actual calculation, these are stored separately. 

Table 2. Numbers of unique (numerically different) 
~-coefficients 

S 

0,�89 1,3 2,3 3~ 

2 1 1 
3 6 2 
4 6 18 2 
5 28 38 2 
6 28 82 66 
7 98 222 98 
8 98 30O 460 
9 312 862 806 

10 312 988 1836 
11 996 2624 3836 
i2 996 2802 5980 

2 
2 

142 
184 

1414 
2004 
7056 
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Instead of the non-zero n-coefficients themselves references to the unique list are 
stored together with the indices of the relevant branching diagram paths co. In 
this way a number of references may be stored together in one computer word. 
Since the numbers of non-zero elements per column or row depend on co and P, 
we also need information as to the first word addresses of the various columns and 
rows of the n-matrices. The mappings co'(co") and co"(co) needed for Eqs. (31) and 
(32) are stored separately. Finally all possible products F(S~)F(S~) may be included 
in the standard list. 

Using 60-bit computer words we have generated the lists of standard coefficients 
needed for CI calculations with some selected values of S and m (as mentioned 
above the list for m open shells may be used for CI calculations with any number 
of open shells m ' <  m if S is fixed). In the construction of these lists much computer 
time may be saved by using integer arithmetic as much as possible. This may be 
done by observing that all n-coefficients are constructed by using a very small 
number of numerically different fi(Sk) factors, cf. Eqs. (18), (24b) and (28). 

Therefore it is advantageous to characterize each n-coefficient by thef~(Sk) factors 
it contains. While constructing the standard list the evaluation of a n-coefficient as 
a real number is then only necessary if it is not already included in the list of 
numerically different coefficients. Using this method, about 10 rain. CP time is 
needed for the construction of the standard list for rn = 10, S=  3 (CD/CYBER 73). 
The lengths of the standard lists are given in Table 3. 

S 

m 0,�89 1,~- 2, 5 

6 216 413 288 
7 832 941 424 
8 1076 2731 2002 
9 5493 8132 3607 

10 7285 22358 17858 

Table 3. Lengths of standard lists for CI calcula- 
tions with selected maximal values of m and fixed 
S (60-bit words are used) 

5. Conclusions 

We have shown that our method leads to a substantial reduction in the size of 
the standard list of coefficients which may be used for the calculation of symbolic 
matrix element lists for use in CI calculations with large numbers of open shells. 
Since our method may be expected to be comparable in speed to the method of 
Wetmore and Segal, we conclude that our method will be useful for large-scale 
CI calculations. Further reductions in the length of the standard list are possible, 
e.g, by considering the simplifications caused by equivalently occupied orbitals 
(orbitals which are purely singlet or triplet coupled), but these will not be further 
commented upon because the savings in storage are relatively small, whereas the 
structure of the standard list is considerably more complicated. Our method is 
also useful for hand calculations, because the number of non-zero contributions to 
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the scalar product in Eq. (4) is usually small and because the z-coefficients may 
be expressed as a continued product of a small number off~(Sk) factors. 
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